Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion
نویسندگان
چکیده
OBJECTIVE Circulating fibroblast growth factor 21 (FGF21) is an important auto- and endocrine player with beneficial metabolic effects on obesity and diabetes. In humans, thermogenic brown adipose tissue (BAT) was recently suggested as a source of FGF21 secretion during cold exposure. Here, we aim to clarify the role of UCP1 and ambient temperature in the regulation of FGF21 in mice. METHODS Wildtype (WT) and UCP1-knockout (UCP1 KO) mice, the latter being devoid of BAT-derived non-shivering thermogenesis, were exposed to different housing temperatures. Plasma metabolites and FGF21 levels were determined, gene expression was analyzed by qPCR, and tissue histology was performed with adipose tissue. RESULTS At thermoneutrality, FGF21 gene expression and serum levels were not different between WT and UCP1 KO mice. Cold exposure led to highly increased FGF21 serum levels in UCP1 KO mice, which were reflected in increased FGF21 gene expression in adipose tissues but not in liver and skeletal muscle. Ex vivo secretion assays revealed FGF21 release only from BAT, progressively increasing with decreasing ambient temperatures. In association with increased FGF21 serum levels in the UCP1 KO mouse, typical FGF21-related serum metabolites and inguinal white adipose tissue morphology and thermogenic gene expression were altered. CONCLUSIONS Here we show that the genetic ablation of UCP1 increases FGF21 gene expression in adipose tissue. The removal of adaptive nonshivering thermogenesis renders BAT a significant source of endogenous FGF21 under thermal stress. Thus, the thermogenic competence of BAT is not a requirement for FGF21 secretion. Notably, high endogenous FGF21 levels in UCP1-deficient models and subjects may confound pharmacological FGF21 treatments.
منابع مشابه
FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis.
Certain white adipose tissue (WAT) depots are readily able to convert to a "brown-like" state with prolonged cold exposure or exposure to β-adrenergic compounds. This process is characterized by the appearance of pockets of uncoupling protein 1 (UCP1)-positive, multilocular adipocytes and serves to increase the thermogenic capacity of the organism. We show here that fibroblast growth factor 21 ...
متن کاملSex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease
Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investi...
متن کاملSkeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine.
UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold elevated circulating FGF21 in UCP1-Tg mice. Despite a reduced muscle mass, UCP1-Tg mice showed no evid...
متن کاملTHE EFFECT OF EIGHT WEEKS HIGH INTENSITY INTERVAL TRAINING (HIIT) ON SERUM AMOUNTS OF FGF21 AND IRISIN IN SEDENTARY OBESE WOMEN
Background & Aims: Transforming white adipose tissue to brown adipose tissue is considered a solution to overcome undesirable effects of obesity in human beings. Thus, the aim of this research was to investigate the effect of eight weeks of high intensity interval training (HIIT) on serum amounts of fibroblast growth factor 21 (FGF21) and Irisin in sedentary obese women. Materials & Methods: T...
متن کاملErythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice
Erythropoietin (EPO), clinically used as a hematopoietic drug, has received much attention due to its nonhematopoietic effects. EPO reportedly has beneficial effects on obesity and diabetes mellitus. We investigated whether interscapular brown adipose tissue (iBAT: main part of classical BAT) could play a role in EPO's anti-obesity and anti-diabetic effects in diet-induced obese mice. Four-week...
متن کامل